Standing waves for nonlinear Schrödinger equations and Kato-Rellich potential

Aleksander Ćwiszewski, Wojciech Kryszewski and Piotr Kokocki

We shall look for standing waves in the nonlinear Schrödinger equation

$$
i \psi_{t}+\Delta \psi=V(x) \psi+g(x,|\psi|) \frac{\psi}{|\psi|}, x \in \mathbb{R}^{N}, t>0
$$

with the Kato-Rellich type potential V and the nonlinearity g. Assuming that g satisfies either the Landesmann-Lazer conditions or the so-called sign conditions, we prove the existence and bifurcation from infinity results. Different types of estimates for g shall be considered. The results are obtained via the Conley index in the version of Rybakowski [6] and extend those known from the literature such as [4, [3] and (5).

References

[1] A. Ćwiszewski, W. Kokocki, Standing waves for Schrödinger equations with Kato-Rellich potentials, Nonlinear Analysis, Volume 237, December 2023, 113373.
[2] A. Ćwiszewski, W. Kokocki, Standing waves for Schrödinger equations with bounded nonlinearities, in preparation.
[3] A. Ćwiszewski, W. Kryszewski, Bifurcation from infinity for elliptic problems on \mathbb{R}^{N}, Calc. Var. 58 (2019), 13.
[4] W. Kryszewski, A. Szulkin, Bifurcation from infinity for an asymptotically linear Schrödinger equation, J. Fixed Point Theory Appl. 16 (1-2) (2014) 411-435.
[5] C. Li, J. Wang, Bifurcation from infinity of the Schrödinger equation via invariant manifolds, Nonlinear Anal. 213 (2021) 22, 112490.
[6] K.P. Rybakowski, The Homotopy Index and Partial Differential Equations, in: Universitext, Springer-Verlag, Berlin, 1987.

First Author: Aleksander, Ćwiszewski
Affiliation: Faculty of Mathematics and Computer Science/Nicolaus Copernicus University 87-100 Toruń, Poland
e-mail: aleks@mat.umk.pl
Second Author: Piotr, Kokocki
Affiliation: Faculty of Mathematics and Computer Science/Nicolaus Copernicus University 87-100 Toruń, Poland
e-mail: pkokocki@mat.umk.pl
Third Author: Wojciech, Kryszewski
Affiliation: Institute of Mathematics/Lodz University of Technology 93-590 Łódź, Poland
e-mail: wojciech.kryszewski@p.lodz.pl

