The role of M-matrices in the study of nonlinear operator systems via monotone operators methods

Michał Bełdziński

In the talk I will study a system of equations of the form

$$
\begin{cases}-\operatorname{div}\left(\varphi_{1}(x,\|\nabla u(x)\|) \nabla u(x)\right)+\langle\boldsymbol{a} \mid \nabla u(x)\rangle=f_{1}(x, u(x), w(x)) & \text { for } x \in \Omega, \tag{1}\\ -\operatorname{div}\left(\varphi_{2}(x,\|\nabla w(x)\|) \nabla w(x)\right)+\langle\boldsymbol{b} \mid \nabla w(x)\rangle=f_{2}(x, u(x), w(x)) & \text { for } x \in \Omega, \\ u(x)=w(x)=0 & \text { for } x \in \partial \Omega\end{cases}
$$

and present conditions that guarantee the existence of solutions of the system (1) that are also (in a particular, potential case, when $\boldsymbol{a}=\boldsymbol{b}=\mathbf{0}$) Nash-type equilibrium for functionals

$$
\begin{aligned}
E_{1}(u, w) & =\int_{\Omega} \int_{0}^{\|\nabla u(x)\|} \varphi_{1}(x, s) s d s d x-\int_{\Omega} \int_{0}^{u(x)} f(x, s, w(x)) d s d x, \\
E_{2}(u, w) & =\int_{\Omega} \int_{0}^{\|\nabla w(x)\|} \varphi_{2}(x, s) s d s d x-\int_{\Omega} \int_{0}^{w(x)} f(x, u(x), s) d s d x, \\
& \text { for all } u, w \in H_{0}^{1}(\Omega)
\end{aligned}
$$

An investigation into the existence of such solutions, started in [4], was continued for instance in [3, 5]. All the works mentioned were based on Perov's Contraposition Principle theorem and on Ekelnand's Variational Principle or on other variational techniques. Presented approach, using M-matrices and the Theory of Monotone Operators, developes our earlier results, see [1, 2, .

References

[1] M. Bełdziński, M. Galewski, Nash-type equilibria for systems of non-potential equations, Appl. Math. Comput. 385, 9 (2020)
[2] M. Bełdziński, M. Galewski, D. Barilla, Nash-type equilibria for systems of partially potential nonlinear equations, Math. Methods Appl. Sci. 46, No. 11, 11830-11841 (2023)
[3] A. Budescu, R. Precup, Variational properties of the solutions of singular second-order differential equations and systems, J. Fixed Point Theory Appl. 18, No. 3, 505-518 (2016)
[4] R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal. 3, No. 4, 197-207 (2014)
[5] R. Precup, A. Stan, Linking methods for componentwise variational systems, Result. Math. 78, 25 (2023)

First Author: Michał Bełdziński
Affiliation: Institute of Mathematics, Lodz University of Technology 93-590, Poland
e-mail: michal.beldzinski@p.lodz.pl

