Existence of nonoscilatory solution on k-dimensional system of delayed nonlinear discrete equations with p-Laplacian

Urszula Ostaszewska, Ewa Schmeidel and Małgorzata Zdanowicz

We consider the k-dimensional system of delayed discrete nonlinear equations with p-Laplacian in the following form

$$\begin{cases} \Delta \phi_p \left(x_i(n) + q_i(n) \, x_i(n-l_i) - C_i \right) = a_i(n) \, f_i(x_{i+1}(n-m_i)) + b_i(n), \\ \Delta \phi_p \left(x_k(n) + q_k(n) \, x_k(n-l_k) - C_k \right) = a_k(n) \, f_k(x_1(n-m_k)) + b_k(n), \end{cases}$$

where $i = 1, \ldots, k - 1$, $n \in \mathbb{N}_0 = \{n_0, n_0 + 1, \ldots\}$, $n_0 = \max_{i=1,\ldots,k} \{l_i, m_i\}$, $l_i, m_i \in \mathbb{N} = \{0, 1, 2, \ldots\}$. Here Δ is the forward difference operator defined by $\Delta u(n) = u(n+1) - u(n)$, and ϕ_p is *p*-Laplacian defined by $\phi_p(t) = |t|^{p-1}t$, p > 1, $t \in \mathbb{R}$. Moreover $q_i = (q_i(n))$, $a_i = (a_i(n))$, $b_i = (b_i(n))$ are given sequences of real numbers, C_i are given constants, $f_i \colon \mathbb{R} \to \mathbb{R}$ are given functions, and $x_i = (x_i(n))$ for $i = 1, \ldots, k$ are unknown real sequences. Throughout this paper X denotes an unknown vector (x_1, \ldots, x_k) and X(n) denotes $(x_1(n), \ldots, x_k(n)) \in \mathbb{R}^k$. The aim of this paper is to present sufficient conditions for the existence of bounded positive persistent solutions of the above system with various $(q_i(n))$, $i = 1, \ldots, k$. The main tool used in the proofs of presented theorems is Krasnoselskii's Fixed Point Theorem.

References

- G. D'Aguia, J. Mawhin, A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian, J. Math. Anal. Appl. 447, 383–397 (2017).
- [2] R.P. Agarwal, M. Bohner, S.R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
- [3] M. Migda, E. Schmeidel, M. Zdanowicz, Existence of nonoscillatory bounded solutions of three dimensional system of neutral difference equations, Appl. Anal. Discrete Math. 9, 271–284 (2015).

First Author:	Urszula Ostaszewska
Affiliation:	Faculty of Mathematics, University of Bialystok
	15-245 Białystok, Poland
e-mail:	uostasze@math.uwb.edu.pl
Second Author:	Ewa Schmeidel
Affiliation:	Faculty of Computer Science, University of Bialystok
	15-245 Białystok, Poland
e-mail:	e.schmeidel@uwb.edu.pl
Third Author:	Małgorzata Zdanowicz
Affiliation:	Faculty of Computer Science, University of Bialystok
	15-245 Białystok, Poland
e-mail:	mzdan@math.uwb.edu.pl