Nonexistence results for fractional differential inequalities

J.R.L.Webb

We will prove nonexistence of global solution of a Caputo fractional differential problem of the form $D_*^{\alpha}u(t) = \lambda t^{\beta}|u(t)|^p$, $u(0) = u_0 > 0$ for $0 < \alpha < 1$ and $\alpha + \beta > 0$ when p > 1 (β can be negative). This is motivated by work of Laskri and Tatar, Comput. Math. Appl. (2010) and Shan and Lv, Filomat (2024). Laskri and Tatar show that $p_0 := \frac{1+\beta}{1-\alpha}$ is a critical exponent in the sense that for $1 there do not exist global solutions, whereas for <math>p > p_0$ they give an example of a non-zero global solution. We prove that global solutions do not exist for all p > 1. The reason for these differences is that we have $u_0 > 0$, their example has $u_0 = 0$. We also improve on the result in Shan and Lv paper by considering a more general problem and by giving a more precise conclusion.

References

- Y. Laskri and N-e Tatar, The critical exponent for an ordinary fractional differential problem. Comput. Math. Appl. 59 (2010), no. 3, 1266-1270.
- [2] Y. Shan and G. Lv, New criteria for blow-up of fractional differential equations. Filomat 38:4 (2024), 1305-1315.
- [3] J. R.L. Webb, *Nonexistence results for fractional differential inequalities*. Submitted for publication.

First Author:	Jeff Webb			
Affiliation:	School of Mathematics and Statistics,	University of	Glasgow,	Glasgow
	G12 8SQ, UK			
e-mail:	jeffrey.webb@glasgow.ac.uk			